Title Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth Nonconvex Minimization
نویسندگان
چکیده
We consider the restoration of piecewise constant images where the number of the regions and their values are not fixed in advance, with a good difference of piecewise constant values between neighboring regions, from noisy data obtained at the output of a linear operator (e.g., a blurring kernel or a Radon transform). Thus we also address the generic problem of unsupervised segmentation in the context of linear inverse problems. The segmentation and the restoration tasks are solved jointly by minimizing an objective function (an energy) composed of a quadratic data-fidelity term and a nonsmooth nonconvex regularization term. The pertinence of such an energy is ensured by the analytical properties of its minimizers. However, its practical interest used to be limited by the difficulty of the computational stage which requires a nonsmooth nonconvex minimization. Indeed, the existing methods are unsatisfactory since they (implicitly or explicitly) involve a smooth approximation of the regularization term and often get stuck in shallow local minima. The goal of this paper is to design a method that efficiently handles the nonsmooth nonconvex minimization. More precisely, we propose a continuation method where one tracks the minimizers along a sequence of approximate nonsmooth energies {Jε}, the first of which being strictly convex and the last one the original energy to minimize. Knowing the importance of the nonsmoothness of the regularization term for the segmentation task, each Jε is nonsmooth and is expressed as the sum of an 1 regularization term and a smooth nonconvex function. Furthermore, the local minimization of each Jε is reformulated as the minimization of a smooth function subject to a set of linear constraints. The latter problem is solved by the modified primal-dual interior point method, which guarantees the descent direction at each step. Experimental results are presented and show the effectiveness and the efficiency of the proposed method. Comparison with simulated annealing methods further shows the advantage of our method.
منابع مشابه
Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth Nonconvex Minimization
We consider the restoration of piecewise constant images where the number of the regions and their values are not fixed in advance, with a good difference of piecewise constant values between neighboring regions, from noisy data obtained at the output of a linear operator (e.g., a blurring kernel or a Radon transform). Thus we also address the generic problem of unsupervised segmentation in the...
متن کاملNonconvex `p -regularization and Box Constrained Model for Image Restoration
Abstract. Nonsmooth nonconvex regularization has remarkable advantages for the restoration of piecewise constant images. Constrained optimization can improve the image restoration using a priori information. In this paper, we study regularized nonsmooth nonconvex minimization with box constraints for image restoration. We present a computable positive constant θ for using nonconvex nonsmooth re...
متن کاملNon-Lipschitz lp-Regularization and Box Constrained Model for Image Restoration
Nonsmooth nonconvex regularization has remarkable advantages for the restoration of piecewise constant images. Constrained optimization can improve the image restoration using a priori information. In this paper, we study regularized nonsmooth nonconvex minimization with box constraints for image restoration. We present a computable positive constant θ for using nonconvex nonsmooth regularizat...
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملThe L1-Potts Functional for Robust Jump-Sparse Reconstruction
We investigate the nonsmooth and nonconvex L1-Potts functional in discrete and continuous time. We show Γ-convergence of discrete L1-Potts functionals toward their continuous counterpart and obtain a convergence statement for the corresponding minimizers as the discretization gets finer. For the discrete L1-Potts problem, we introduce an O(n2) time and O(n) space algorithm to compute an exact m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008